NY & NJ Harbor & Tributaries Focus Area Feasibility Study

Teach In: Hazard & Risk Assessment
AGENDA

► Contribution of hazards to risk
► Sectors at risk
► How to review a risk assessment
► Holistic risk reduction
► Future risk reduction through maintenance and adaptation
► Iteration during construction
HAZARDS
Multiple, simultaneously
CRITICAL ASSETS BY SECTOR

Resilient Communities

1. Community Partnerships
2. Infrastructure Protection
3. Resilience & Recovery
4. Transportation
5. Reliable Utilities & Communications
6. Coastal Erosion Control & Restoration

APTIM PROVIDED COMMUNITY SERVICES
Engineering & Construction
Maintenance & Operations
Environmental
Economic Standpoint
Project & Program Management
DURING THE RISK ASSESSMENT

What to verify?

► Data Collection
 ▪ Study area
 ▫ Check perimeter for critical assets
 ▫ Determine unique geography and services
 ▪ Scenarios
 ▫ Tide datum and elevation datum
 ▫ Return interval varies with data input
 ▫ Compound scenarios: sea level rise + surge
 ▫ Sea level rise projections- acceleration potential
 ▪ Modeling results
 ▫ Extracting data for points, lines and areas
 ▫ Grid size and extrapolation
 ▪ Asset Interdependencies
 ▫ Road access to utilities
 ▫ Electrical systems for flood control
DURING THE RISK ASSESSMENT

What to verify?

► **Vulnerability** (impacts and disruptions)
 - Exposure (proximity to hazard)
 - Review by sector, multiple hazards at same location, compound impacts requiring multiple adaptation strategies
 - Sensitivity (effect of hazard)
 - Sector specific asset data necessary to know sensitivity (underground assets)
 - Quantifying aged infrastructure
 - Adaptive Capacity (feasibility to accommodate threat)
 - Thresholds for emergency response, lifeline services

► **Risk**
 - Likelihood of Occurrence (probability of event)
 - Assigning probability to future sea level rise in context of current hazards
 - Consequence (effect of impacts)
 - Damages based on recent events to weight impacts
 - Risk Ranking and Prioritization (scale, criticality)
 - Varies by stakeholder interest and location
What to ask?

► What is most critical to protect?
► Where are the impacts most severe?
► Where are the stakeholder prioritized vulnerabilities?
► Where are the at risk assets concentrated?
► What are the common vulnerabilities across locations?
► What are the regional assets the community is dependent upon (electrical grid, transportation systems, water resources, housing)?
APPLICATION OF RISK ASSESSMENT

How to think holistically?

► Using this information for community asset planning/leverage current initiatives for continued success
► Affordability of property insurance
► Implications of access and supply chain risks
► Regional population growth, commerce projections and land use changes
► Sectors (energy and flood control) should coordinate to address cascading failures
► Public private partnerships
BUILDING RESILIENCE, SEEING OPPORTUNITIES

PRIVATE ADAPTATION
Owners/Associations

GOVERNMENT ADAPTATION
Regulatory/Town Owned

Continuous Tidal Barriers/Seawalls

Maintaining level of service for roads and stormwater

Floodproofing or Elevating Homes/Retail

Floodproofing public capital assets

In-Development Roads/Stormwater

Resilient Policy and Regulation

Natural Area Adaptation

Future land use

Road Harmonization

Green drainage infrastructure

Example from Town Public Works
Iteration during Construction

Interim Solutions

Bayou Chene Flood Protection Structure, Louisiana
- **Scope:** Downstream flood control in response to new upstream structure and floodwater release
- **Iterations**
 - St. Mary Levee District constructed temporary structure to prevent 5' of flooding
 - In 2016, installed emergency structure in 15 days to hold 2' flooding
 - In 2019, emergency structure in 11 days
 - Final project of floodwall, gate and levees
 - Iteration of design standard

Practical Methods

Inner Harbor Navigation Canal Surge Protection Barrier, Louisiana
- **Scope:** 24 feet and 26 feet above water, 100-year storm surge protection for large portion of Orleans and St. Bernard Parishes
- **Iterations**
 - Closure piles design for effective seal
 - Logistical needs for over water construction

Operations

Houma Navigation Lock Complex, Louisiana
- **Scope of Work:** 800 foot long lock chamber, flood gate, 100-250 foot navigation channel, connects to existing levees
- **Iterations**
 - Phased approach to ensure federal funding is available via Restore Act
 - Coordination with stakeholders and USACE to ensure public and agency concerns are heard
 - Logistical needs for both overwater construction and maintaining flood protection during construction
FUTURE RISKS

Maintenance and Long-term Adaptation

► Evaluation of performance metrics
► Recovery planning
► Timeliness and cost sharing for maintenance
 ▫ Inclusion in cost benefit analysis
► Federal reauthorization process
► Adaptability of constructed project for future conditions
 ▫ Expected life cycle and projections for future scenarios
 ▫ Anticipated future points of failure for aged infrastructure
QUESTIONS
Expect the Extraordinary.